If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10z^2-17z+3=0
a = 10; b = -17; c = +3;
Δ = b2-4ac
Δ = -172-4·10·3
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-13}{2*10}=\frac{4}{20} =1/5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+13}{2*10}=\frac{30}{20} =1+1/2 $
| (x^2)+(x+2)^2=58^2 | | 20.3+x=30.5 | | 20.3+x=305 | | P(x)=−15x(x−8) | | p/33=3/28 | | 20z^2-17z+3=0 | | –5u+1+16u=–10u–20 | | (12y-8)+52=180 | | 7^2x3.14= | | 2n-4=4n+-8 | | 3w-16=32 | | -4x+7+10x=-7+6x | | (6x+14)+52=180 | | 12x-14=42+10 | | 7(-2x-4=-28 | | b-23=70 | | 7(-2x-4=28 | | 6u=–2+5u | | 24x-19x=75 | | z+49=113 | | -6x-4=5 | | 2x^2-14+98=0 | | 0.5=x*2x+0.5/2 | | 2x+8=–3.5x+10 | | 2x^2-14x-98=0 | | 5h–=2060 | | (4n+3)=39 | | 5x+6=211 | | 11+3a=50 | | 56+x+2=180 | | 2x^2-3=37 | | -7=2k+8 |